Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant Reprod ; 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38183442

RESUMO

KEY MESSAGE: Lastly, the bZIP gene family encompasses genes that have been reported to play a role in flower development, such as bZIP14 (FD). Notably, bZIP14 is essential for Flowering Locus T (FT) initiation of floral development in Arabidopsis (Abe et al. 2005). Cotton (Gossypium hirsutum L.) is the world's most extensively cultivated fiber crop. However, its reproductive development is poorly characterized at the molecular level. Thus, this study presents a detailed transcriptomic analysis of G. hirsutum at three different reproductive stages. We provide evidence that more than 64,000 genes are active in G. hirsutum during flower development, among which 94.33% have been assigned to functional terms and specific pathways. Gene set enrichment analysis (GSEA) revealed that the biological process categories of floral organ development, pollen exine formation, and stamen development were enriched among the genes expressed during the floral development of G. hirsutum. Furthermore, we identified putative Arabidopsis homologs involved in the G. hirsutum gene regulatory network (GRN) of pollen and flower development, including transcription factors such as WUSCHEL (WUS), INNER NO OUTER (INO), AGAMOUS-LIKE 66 (AGL66), SPOROCYTELESS/NOZZLE (SPL/NZZ), DYSFUNCTIONAL TAPETUM 1 (DYT1), ABORTED MICROSPORES (AMS), and ASH1-RELATED 3 (ASHR3), which are known crucial genes for plant reproductive success. The cotton MADS-box protein-protein interaction pattern resembles the previously described patterns for AGAMOUS (AG), SEEDSTICK (STK), SHATTERPROOF (SHP), and SEPALLATA3 (SEP3) homolog proteins from Arabidopsis. In addition to serving as a resource for comparative flower development studies, this work highlights the changes in gene expression profiles and molecular networks underlying stages that are valuable for cotton breeding improvement.

2.
Physiol Plant ; 175(4): e13984, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37616001

RESUMO

Elevated [CO2 ] (E[CO2 ]) mitigates agricultural losses of C4 plants under drought. Although several studies have described the molecular responses of the C4 plant species Sorghum bicolor during drought exposure, few have reported the combined effects of drought and E[CO2 ] (E[CO2 ]/D) on the roots. A previous study showed that, among plant organs, green prop roots (GPRs) under E[CO2 ]/D presented the second highest increase in biomass after leaves compared with ambient [CO2 ]/D. GPRs are photosynthetically active and sensitive to drought. To understand which mechanisms are involved in the increase in biomass of GPRs, we performed transcriptome analyses of GPRs under E[CO2 ]/D. Whole-transcriptome analysis revealed several pathways altered under E[CO2 ]/D, among which photosynthesis was strongly affected. We also used previous metabolome data to support our transcriptome data. Activities associated with photosynthesis and central metabolism increased, as seen by the upregulation of photosynthesis-related genes, a rise in glucose and polyol contents, and increased contents of chlorophyll a and carotenoids. Protein-protein interaction networks revealed that proliferation, biogenesis, and homeostasis categories were enriched and contained mainly upregulated genes. The findings suggest that the previously reported increase in GPR biomass of plants grown under E[CO2 ]/D is mainly attributed to glucose and polyol accumulation, as well as photosynthesis activity and carbon provided by respiratory CO2 refixation. Our findings reveal that an intriguing and complex metabolic process occurs in GPRs under E[CO2 ]/D, showing the crucial role of these organs in plant drought /tolerance.


Assuntos
Sorghum , Sorghum/genética , Sorghum/metabolismo , Biomassa , Dióxido de Carbono/metabolismo , Açúcares , Secas , Clorofila A , Fotossíntese/fisiologia , Folhas de Planta/metabolismo , Glucose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA